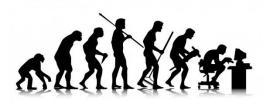


Vehicle-to-Infrastructure State of the Practice Review


Orange County Traffic Engineering Council OCTEC – March Luncheon

Shayan Khoshmagham, Iteris March 22, 2018

© 2017 Iteris, Inc. All rights reserved

Evolution of Traffic Operations

- Operational and Maintenance Standards
 - From: Nothing Universal
 - To: NTCIP, Society of Automotive Engineers (SAE)
- Signal Controllers
 - From: Manual Directions
 - To: Modern Traffic Light Control (TLC) Systems
- Data Collection
 - From: Tally Sheets, Mechanical Counting Board
 - To: Wireless Technologies (e.g. Probe, Bluetooth) and GPS-enabled Devices

Evolution of Traffic Data Collection

- ✓ Manual Counts and Speed Measurements
- ✓ Fixed Location Sensors to log the passage time of the vehicles
 - Loop Detectors, Laser Ranging Profilers, Video Surveillance Cameras
- ✓ Passive matching of vehicles using infrastructure-based data
 - Vehicle Signature Matching with: wireless magnetic sensors, license plate recognition systems, Automatic Vehicle Identification (AVI) tags, MAC addresses of Bluetooth enabled devices, and cellular phones
- ✓ Active matching of GPS-enabled equipped vehicles
 - Fleets of Probe vehicles, taxis, heavy commercial vehicles
- ✓ High Resolution Traffic Signal Controller and Detailed Vehicle Trajectories
 - Eco-system of Smart Vehicles and Advanced Signal Controllers

Today's ITS Components

Intelligent Infrastructure

- Traffic Signs
- Variable Message Sign (VMS)
- Sensors

Smart Vehicles

- GPS Navigational Systems
- Smart Speed Assist
- Intelligent Cruise Control

Information Services

- Real-time Guidance information
- Smart phone applications

Emergence of Connected Vehicles

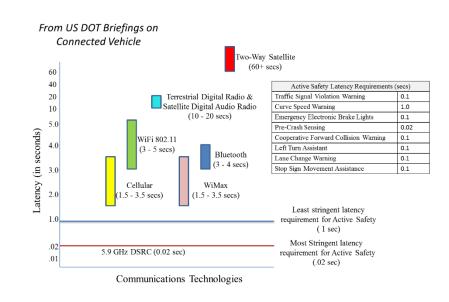
- No longer a question of 'if' but rather of 'when'
- Internet-of-Things (IoT) Applications:
 - ☐ Intelligent Signal Control (I-SIG)
 - ☐ Queue warnings (Q-WRN)
 - ☐ Eco Driving
 - □ Collision Avoidance
 - ☐ Freight Platooning

Connected Vehicle Essentials

5.9 GHz **DSRC** Communication:

- vehicle-to-vehicle (v2v)
- vehicle-to-infrastructure (v2I)

SAE J2735 Message Set:


- BSM, SPAT, MAP, SRM, PSM...

Applications:

- SAFETY
- MOBILITY
- ENVIRONMENT

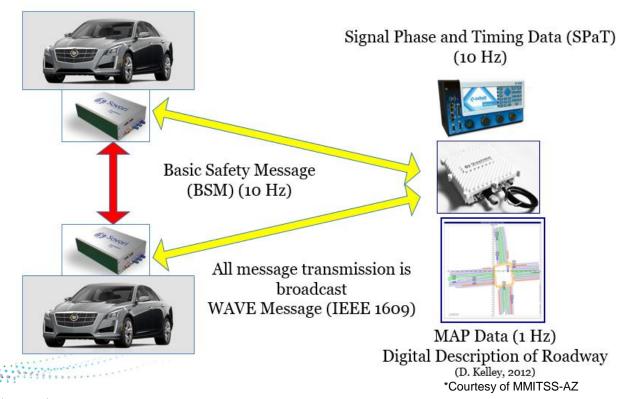
Goal:

 A more complete picture of traffic networks, signalized intersections, and travelers

Emerging CV Ecosystem

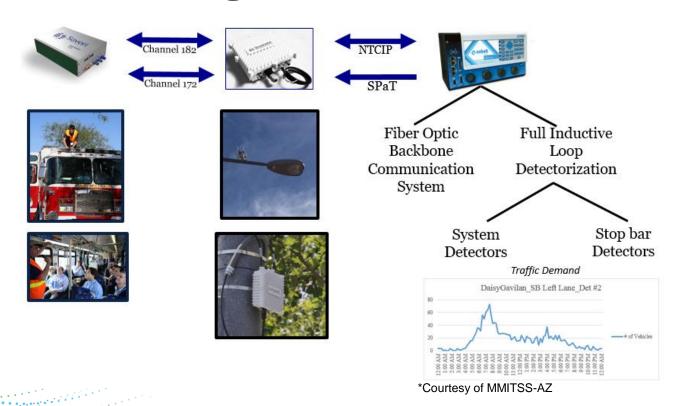
Intelligent Transportation Systems

- Instruments: Sensors,
 Onboard Unit, Roadside Unit
- Interconnected: V2I, V2V, V2P, V2X
- Intelligence: Smart Applications



Big Data

- Volume: Terabytes and Petabytes of Data Objects
- Variety: Internal, External, Structured, Unstructured
- Velocity: Low Latency, High Availability

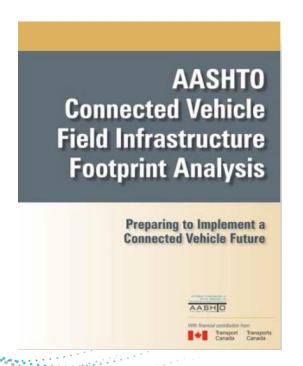


CV Basic Building Blocks

CV Basic Building Blocks

CV Field Test and Deployment

SPaT deployment operational



**National Operations Center of Excellence

Footprint Analysis

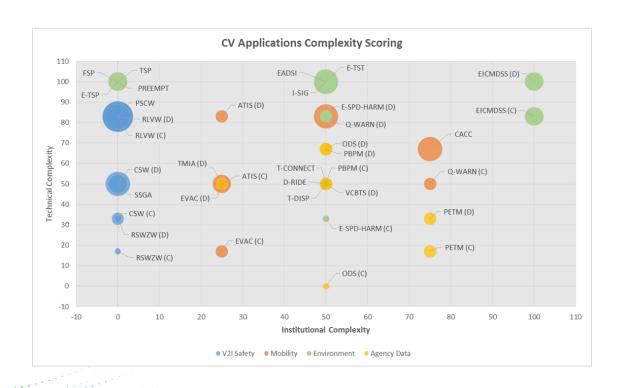
- National deployment footprint requires CV capabilities as they might support multiple applications
- Benefits of field infrastructure compounded as devices are deployed:
 - Road Side Unit (RSU)
 - Advanced Transportation Controller (ATC)
 - On-board Unit (OBU)
 - After-market Safety Device (ASD)

Orange County Transportation Authority

- Understanding the role that "OCTA" plays in the region:
 - Monitor
 - Shape
 - Lead
 - Implement
- Applications in Categories of:
 - Dynamic Mobility
 - Safety
 - Agency Data
 - Safety V2I/V2V

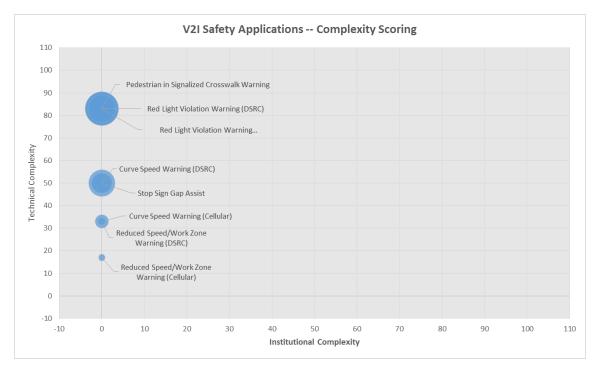
Shortlist of Applications

APPLICATION GROUP	APPLICATION BUNDLE	APPLICATION
Mobility	Enable ATIS	Advanced Traveler Information System (mobility)
	Multimodal Intelligent Traffic Signal Systems (MMITSS)	Intelligent Traffic Signal System (I- SIG)
		Freight Signal Priority (FSP)
		Transit Signal Priority (TSP)
		Mobile Accessible Pedestrian Signal System (PED-SIG)
		Emergency Vehicle Preemption (PREEMPT)
	Integrated Network Flow Optimization (INFLO)	Dynamic Speed harmonization (SPD-HARM)
		Queue Warning (Q-WARN)
		Cooperative Adaptive Cruise Control (CACC)
	Response, Emergency Staging and Communications, Uniform Management, and Evacuation (R.E.S.C.U.M.E.)	Incident Scene Pre-Arrival Staging Guidance for Emergency Responders (RESP-STG)
		Incident Scene Work Zone Alerts for Drivers and Workers (INC-ZONE)
		Emergency Communications and Evacuation (EVAC)
Mobility	Integrated Dynamic Transit Operations (IDTO)	Connection Protection (T- CONNECT)
		Dynamic Transit Operations (T-DISP) Dynamic Ridesharing (D-RIDE)
	Freight Advanced Traveler Information Systems (FRATIS)	Freight-Specific Dynamic Travel Planning and Performance (FRATIS) Drayage Optimization (DR-OPT)

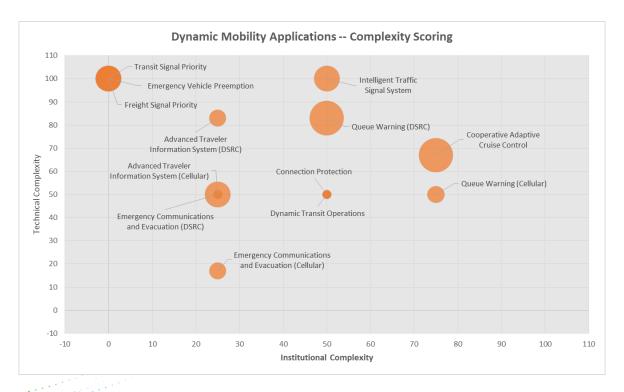


Complexity Score

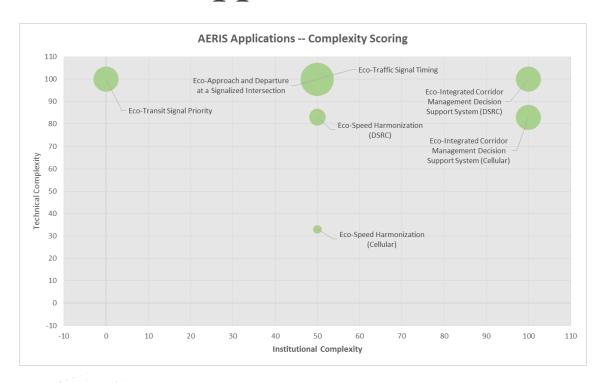
- Computed for each application
- Data Availability:
 - 2014 AASHTO CV Field Infrastructure Footprint Analysis
 - Open Source Application Development Portal (OSADP)
 - Research Data Exchange (RDE)
- Components:
 - Institutional complexity
 - Technical complexity
 - Risk Level
- Lower score = Easier deployment



Complexity Score Visualization



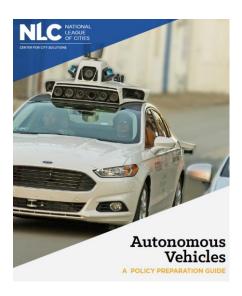
V2I Safety Applications



Dynamic Mobility Applications



Environmental Applications



Agency Data Applications

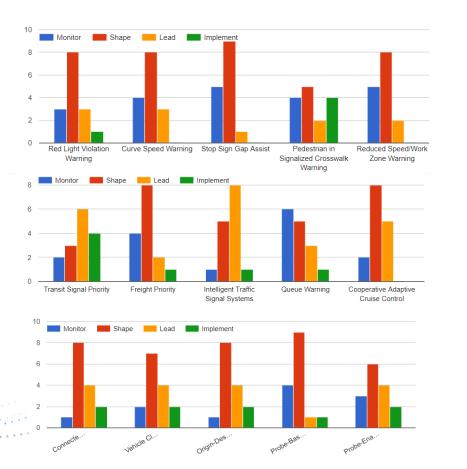
Action Items...

- Cities should **encourage** V2I **investment** & become an **active investment partner**.
- Data processing requirements often out of reach;
 partnering with local academic institutions a solution.
- Wireless broadband needs will grow exponentially, understand infrastructure will need to be constantly updated.
- While 5G is important today, it will be surpassed in the future.

V2I Deployment Survey

Evaluation matrix

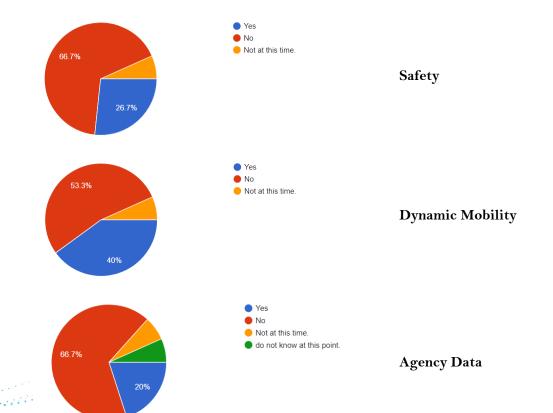
- Responsible parties and respective actions
- Challenges & risks with possible actions & roles
- Benefits with possible actions & roles
- Resources to obtain more information


Survey – Participants

- City of Laguna Hills
- City of Lake Forest
- City of Irvine
- Aliso Viejo
- City of Laguna Niguel
- Caltrans
- City of Fullerton
- City of RSM

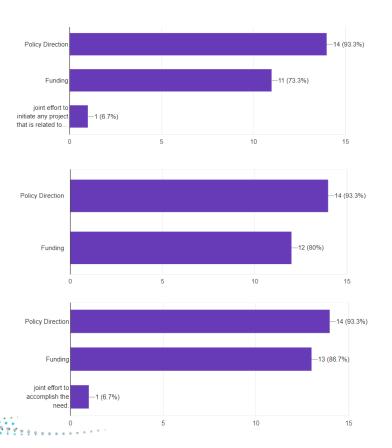
- City of Newport Beach
- City of Laguna Niguel
- Caltrans District 12
- City of La Habra
- Los Alamitos
- Tustin
- City of Santa Ana

Survey – OCTA Primary Role


Safety

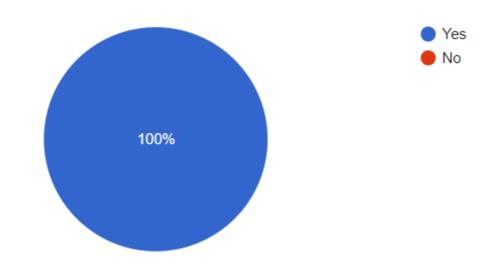
Dynamic Mobility

Agency Data



Survey – Pursuing V2I Initiatives

Survey – OCTA Assistance


Safety

Dynamic Mobility

Agency Data

Survey – Future Participation

Thank You!

Questions?

Shayan Khoshmagham
Data Scientist, Performance Analytics
sxk@iteris.com

